Shape Model Extraction Approach for Face Recognition

نویسنده

  • Mahesh Prasanna
چکیده

Video face recognition is a widely used method in which security is essential that recognizes the human faces from subjected videos. Unlike traditional methods, recent recognition methods consider practical constraints such as pose and illumination variations on the facial images. Our previous work also considers such constraints in which face recognition was performed on videos that were highly subjected pose and illumination variations. The method asserted good performance however; it suffers due to high computational cost. This work overcomes such drawback by proposing a simple face recognition technique in which a cost efficient Active Appearance Model (AAM) and lazy classification are deployed. The deployed AAM avoids nonlinear programming, which is the cornerstone for increased computational cost. Experimental results prove that the proposed method is better than the conventional technique in terms of recognition measures and computational cost.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Face Recognition Based Rank Reduction SVD Approach

Standard face recognition algorithms that use standard feature extraction techniques always suffer from image performance degradation. Recently, singular value decomposition and low-rank matrix are applied in many applications,including pattern recognition and feature extraction. The main objective of this research is to design an efficient face recognition approach by combining many tech...

متن کامل

Facial Expression Recognition Using Digitalised Facial Features Based on Active Shape Model

Facial Expression Recognition is a hot topic in recent years. As artificial intelligent technology is growing rapidly, to communicate with machines, facial expression recognition is essential. The recent feature extraction methods for facial expression recognition are similar to face recognition, and those caused heavy load for calculation. In this paper, Digitalized Facial Features based on Ac...

متن کامل

Supervised Feature Extraction of Face Images for Improvement of Recognition Accuracy

Dimensionality reduction methods transform or select a low dimensional feature space to efficiently represent the original high dimensional feature space of data. Feature reduction techniques are an important step in many pattern recognition problems in different fields especially in analyzing of high dimensional data. Hyperspectral images are acquired by remote sensors and human face images ar...

متن کامل

Hybridization of Facial Features and Use of Multi Modal Information for 3D Face Recognition

Despite of achieving good performance in controlled environment, the conventional 3D face recognition systems still encounter problems in handling the large variations in lighting conditions, facial expression and head pose The humans use the hybrid approach to recognize faces and therefore in this proposed method the human face recognition ability is incorporated by combining global and local ...

متن کامل

Human’s Facial Parts Extraction to Recognize Facial Expression

Real-time facial expression analysis is an important yet challenging task in human computer interaction. This paper proposes a real-time person independent facial expression recognition system using a geometrical feature-based approach. The face geometry is extracted using the modified active shape model. Each part of the face geometry is effectively represented by the Census Transformation (CT...

متن کامل

A Novel Feature Extraction Method for Facial Expression Recognition

In this work, a novel facial feature extraction method is proposed for automatic facial expressions recognition, which detecting local texture information, global texture information and shape information of the face automatically to form the facial features. First, Active Appearance Model (AAM) is used to locate facial feature points automatically. Then, the local texture information in these ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017